为什么碳水和糖才是长胖元凶,明明脂肪热量更高啊? - 知乎

原文链接

一、使人发胖的主要是总热量,不是碳水

主流科学界早就有明确的结论,发胖主要是总热量的问题。

  • 2017年,国际营养学会在审查了大量证据后发表声明,减脂主要靠热量缺口,低碳和高碳饮食效果类似[1]
  • 2019年,美国肥胖协会声明,只要总热量类似,各种减肥法的效果大体接近,低碳/生酮饮食并不具备独特的减肥优势[2]
  • 2016年,权威期刊《糖尿病医学》上发表了一项荟萃分析明确提出:总热量仍然是控制体重的主要指标,在代谢指标和血糖控制方面,低碳似乎与高碳水化合物饮食没有什么不同[3]
  • 2014年,Celeste等人对19个研究进行了荟萃分析,包含3209名受试者,分析结论是,只要总热量相等,低碳/生酮饮食与常规饮食的减肥效果一样[4]
  • 2003年Dena等人对包含3268名参与者的107个相关研究进行了荟萃分析发现,减肥的效果,不是因为饮食中的碳水减少,而是因为总热量减少[5]
  • 2005年,Michael等人对160人的研究表明,低碳水饮食,与低脂高碳饮食的体重减少、健康指标改善效果类似[6]
  • 2018年,Jeannie等人研究了115名二型糖尿病患者,发现低碳饮食(脂肪58%、碳水14%)与高碳饮食(30%脂肪,53%碳水)带来的体重减轻和血糖控制效果类似[7]

还有堆积如山的证据[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34]支持上述观点,我就不一一细说了,总之,总热量才是决定胖瘦的主要因素,而非碳水。

有趣的是,一些总热量不超标、饮食以碳水为主的族群,肥胖率无限接近于零

  • Tsimane人,一支生活在亚马逊河的部族,被柳叶刀认为是流行病学有记录以来心血管风险最低的人群,血压、胆固醇、血糖等其他健康指标也很好;每日总热量的**72%**来自碳水[35]
  • pima印第安人,美洲的传统农耕部族,总体肥胖率、糖尿病接近零,每日总热量的70%以上来自碳水[36]
  • 冲绳,长寿之乡。科研认为冲绳人的健康和他们的饮食方式密切相关[37][38],他们的主食是红薯,碳水占总热量的85%[39]

传统冲绳饮食是典型的高碳水饮食

这些证据表明,使人发胖的是过多的总热量,而不是碳水本身;只要总热量不超标,哪怕饮食中的热量大部分来自碳水,也不会肥胖。

最喜欢说『肥胖与总热量无关,主要是碳水吃多了』的是那些急于恰饭的自媒体,他们喜欢说,控制热量没用,得少吃碳水,得购买他们的低碳水食谱、教程、防弹咖啡、椰子油等。

低碳/生酮饮食减肥特别快可能是幻觉

很多研究发现,在生酮饮食的早期阶段,体重减轻主要是由于**水分损失,**生酮饮食和高碳/常规饮食相比,脂肪损失没有差异[40][41][42][43]

水分损失的说法来自一些早期研究,人的身体每增加1g糖原,伴随2.7-4g的水分增加[44][45][46][47]。所以很多人推测,低碳/生酮饮食摄入的碳水很少,身体糖原含量大幅度下降,伴随大量水分减少,而非脂肪减少(这个说法也存在少量争议研究,但不是本文的重点,就不铺开说了)。


二、同位素追踪结果:吃下去的大部分碳水并没有转化为脂肪

同位素追踪结果显示,大部分碳水都没有转化为脂肪,不管摄入是否过量。

**如果热量不超标,吃碳水50%,脂肪35%的饮食,多达54%的碳水化合物被合成为糖原(主要是肌糖原),剩下的40%多被氧化供能(俗语:燃烧),仅4%**转化为人体脂肪[48]

如果热量严重超标:摄入热量为身体所需的175%(几乎翻倍),并且超出部分全是碳水,受试者体内接近57%的碳水被氧化,30%左右储存为糖原,仅有**13%**转化为人体脂肪[48]

换言之,87%-96%的人体脂肪,是来自于膳食脂肪

这当然不是孤证。另一项研究让精瘦或者肥胖/超重受试者分别进行4周常规饮食(总热量不超)、4周的过量饮食(额外摄入75%的碳水),结果都是大部分碳水被合成为糖原、或者氧化供能,真正碳水转化为脂肪的部分极少[49]

过量碳水的命运

4周后,精瘦的受试者体脂从14kg变成14.3kg,增加了0.3kg脂肪;肥胖/超重的受试者体脂从29.7kg变成30.1kg,增加了0.4kg脂肪(平均值,不看标准差)。

这些数据有力的证明了,对于瘦子或者胖子,过量的碳水大部分被合成肌糖,或者被氧化,只有极少部分转化成了身体脂肪,支持性研究还有很多:

  • Acheson等人让受试者吃了500g碳水(相当于2000g熟米饭),发现受试者的身体糖原增加了408g,在餐后10小时内,133克碳水被氧化;研究着说,这种发现对人们“碳水吃多了会转化为身体脂肪”的传统观念形成了很大的冲击和挑战[50]
  • McDevitt等人计算出,每天摄入360-390克碳水,这些碳水每天转化为的脂肪大约有3-8克。因此过量碳水基本不会增加身体脂肪[51]
  • Strawford等人用抽脂和质谱法分析了受试者大腿和臀部的脂肪[52],发现大约20%的脂肪是由碳水转化而来(意味着有80%的脂肪是来自于膳食脂肪),但不同个体之间具有显著的个体差异,这意味着有些人吃高碳水饮食会稍微增脂多一些,有些人会更少。

有些人可能会说,你这些都是十几年甚至几十年前的老文献了。没错,这是因为“碳水=肥胖”早就被推翻了,近十几年来争议的声音越来越小。但由于老百姓缺乏营养学知识,生酮商和一些自媒体又大力给老百姓洗脑,才会导致『2022年了居然还有人说碳水是肥胖的根源』这种离谱的事。


三、人体脂肪大部分是吃下去的脂肪,而非碳水化合物转化而来

不止一次有权威期刊的论文说了这个问题。2015年,Rosen等人在顶刊cell上发表了一篇论文[53],文中谈到了人体脂肪的来源问题:脂肪细胞中储存的**大部分脂质是吃下去的(食物中的脂肪)—**也就是说,使人发胖的是食物中的脂肪,而非碳水。

原文截图

无独有偶,Michele等人2017年12月发在Compr Physiol上的一篇论文[54]:《Triglyceride metabolism in the liver》也谈到了这问题。

查了下这个期刊2021IF有9.1,算高了,比较靠谱

文中说:正常情况下,消化/重合成后的甘油三酯进入血液后,【大部分】送入脂肪组织/脂肪细胞,剩下的很少部分才去肝脏进一步处理。

论文原图

对于甘油三酯的代谢(figure 1),原文是这么写的:

原文截图

Upon intestinal uptake, FA are reesterified to form TG molecules, which are packaged into chylomicrons and delivered primarily to muscle and adipose tissue.

被肠道吸收后,脂肪酸被重新酯化形成甘油三酯(TG),然后被包装成乳糜微粒,主要输送到肌肉和脂肪组织(primarily,主要);

The remaining TG present in chylomicron remnants is then transported to the liver and processed intracellularly, leading to FA release within hepatocytes.

剩下的、包裹在乳糜微粒中的甘油三酯,随后被运输到肝脏并在细胞内处理,肝细胞将其处理成游离脂肪酸,释放进入血液(remaining,剩余的)。这意思再清楚不过了,吃的脂肪【主要】拿去存入脂肪细胞;剩下的交给肝脏进一步处理。


四、吃下去的食物脂肪类型会影响人体脂肪细胞内的脂肪类型

有一些观点认为,吃下去的脂肪都用来供能了,吃下去的碳水化合物会转化为人体脂肪让人发胖。这个观点是错的,因为许多科学证据已经证明,吃下去的脂肪会大量转化为人体脂肪,吃什么脂肪人体内的脂肪就会发生相应的变化。这方面有很多证据:

  • 早在60年前就发现,成人脂肪组织的脂肪酸组成,与食物中甘油三酯的组成密切相似[55][56],当饮食中的脂肪酸种类发生变化时,人体脂肪组织中的脂肪酸也生相应的变化[55]
  • 儿童吃什么脂肪,他们皮下就是什么脂肪(为主)。断奶前儿童皮下脂肪中的豆蔻酸含量较高(豆蔻酸是脂肪酸的一种,主要包含于乳品),断奶后他们皮下脂肪中的豆蔻酸也随之减少;随年龄增加,他们吃的动物油(猪油等饱和脂肪)增加,他们皮下脂肪中的棕榈酸等(饱和脂肪)也逐渐增加[57]
  • 动物研究结论也与人类研究相互支持:不同的饮食脂肪组成能明显改变动物乳腺中的脂肪酸组成[58][59]

上述并不是什么新鲜观点,科学上早就可以通过人体身上的脂肪种类,来确定近2~3年内膳食脂肪摄入情况[60][61][62],只是知乎上乱给人洗脑的利益相关(生酮/低碳食谱/教程/产品等)自媒体太多了,太多人受到了误导。


五、吃下去的脂肪是如何进入人体脂肪细胞的?

甘油三酯首先在口腔由舌脂肪酶开始消化,然后在胃通过蠕动下以乳滴的形式进入小肠[63][64],在小肠腔内胰脂肪酶的作用下[65],被水解为甘油和脂肪酸[66][67][68][69],然后从肠腔进入肠细胞[70],在酶的作用下[71][72]重合成甘油三酯[73]

这也就是某些反对“吃脂肪长脂肪”的人所说的重新合成。

但很明显,这种重新合成,其实只是换汤不换药,换了个甘油骨架,脂肪酸基本上没啥变化(脂肪酸携带了脂肪中的大部分能量,它才是大头),因此“吃下去的脂肪不是人身上的脂肪”本质上是错的。

接下来,重新合成的甘油三酯具有疏水性/不溶于血液,因此它们被打包成乳糜微粒[74][75],从淋巴[76]进入血液[77][78]运输。

甘油三酯在小肠的重新合成:换汤不换药

进入血液之后,乳糜微粒大部分被运往脂肪细胞[79](和肌肉);乳糜微粒通过毛细血管的时候,被毛细血管内壁的脂蛋白酯酶(LPL)水解[80],释放脂肪酸进入脂肪细胞。

脂肪细胞获取脂肪酸的过程,解释了人脂肪细胞中脂肪酸跟食物的脂肪酸种类的关系

乳糜微粒中的TG还有一部分没有被完全水解,留在里面,连同逐渐变小的乳糜微粒一起成了残渣,被运往肝脏处理。相应的内容,我的另一篇文章有详细叙述:


六、如果大量的碳水没有转化成脂肪,那它们去了哪里?

**第一,糖原合成。**人体的糖缓冲系统主要由肝脏[81][82]和肌肉[83]构成,它们像海绵一样,可吸收许多的糖,存起来。特别是骨骼肌,它是人体处理葡萄糖的主要器官[84][85][86]

一般人肝可容纳100g左右糖。有数据称骨骼肌储存糖的能力是12g/kg肌肉,所以普通人一般肌肉能存400g左右的糖。这些内容在各类教材上都有。

教材原话

注意,葡萄糖一旦进入肌肉被合成大分子肌糖原,就成了肌肉的能量储备,直到被肌肉消耗,不会转化为脂肪。这是因为肌肉中没有把肌糖还原为葡萄糖的酶(葡萄糖-6-磷酸酶)。

第二,用于氧化供能(俗称“燃烧”**)。**当摄入多余碳水时,身体会燃烧掉一部分;当摄入多余脂肪时身体不会燃烧它们。

早期的研究已经证实了上述观点:34名非糖尿病男性经过了10天测试,前4天限制食物,从第5天开始让他们放开吃,这导致他们摄入过多总热量(32%-54%)。结果发现碳水化合物摄入增加导致了额外的碳水化合物氧化(燃烧),但脂肪摄入增加不导致额外脂肪氧化[87]

另一项研究的结论也一样:28名印第安土著妇女同样进行上述测试,前4天限制食物,从第5天开始让放开吃[88]。这导致她们摄入过多总热量,蛋白质摄入增加约11%,脂肪摄入增加约40%,碳水摄入增加约49%。过量摄入碳水化合物可导致碳水化合物氧化增加,而过量脂肪摄入则导致脂肪氧化减少。

两个研究,不同性别,不同人群,不同民族,不同体重,结论却相同:当总热量超标时,碳水摄入增加提升碳水的氧化(燃烧)水平;脂肪摄入增加则不提升脂肪的氧化水平。

这就是为什么,kevin等人观察到,摄入超量碳水化合物期间,受试者24小时的能量消耗增加了840大卡/日[89]。考虑到普通人每日的总热量消耗平均是2000千卡,相当于增加了35%的代谢,这个值相当可观。


七、为什么人体会尽量燃烧掉多余碳水?答案是胰岛素

许多人不知道的是,胰岛素在促进三大能量物质合成、抑制脂肪燃烧的同时,也促进碳水化合物的氧化供能。用通俗的话来说就是:胰岛素会促进碳水被燃烧掉(所以碳水不容易被转化成脂肪,至少不像膳食脂肪那样大部分都转化成人体脂肪)。

我们直接看教科书上的原话:

胰岛素刺激规格及的糖酵解

胰岛素刺激细胞氧化碳水化合物

如果再说深一点,问胰岛素是怎么促进碳水氧化供能的?

这涉及一种关键的酶:丙酮酸脱氢酶复合物-PDC[90][91]。人和动植物获得能量,主要靠著名的三羧酸循环(也叫柠檬酸循环、TCA循环、Kreb循环)。PDC就是那个促进丙酮酸转乙酰辅酶A[92]、促进葡萄糖燃烧的关键酶[93][94]

胰岛素能提升PDC活性[95][96][97]。PDC活性提高了,碳水氧化增加,热量损耗增加。这些内容在教材上都有,不是什么新鲜事。

所以,碳水吃多了,会被额外燃烧掉一些,但脂肪不会[98][99][100]。也就是说,吃多了碳水和脂肪都会促进肥胖,但是吃下去的脂肪几乎不经损失全部转化为人体脂肪,而碳水要损耗掉不少。


八、过量碳水不如过量脂肪胖人

实践是检验真理的唯一标准。

怎么实践?当然是科学实践。

但许多营养实验都存在问题,比如让被调查者自己在问卷上填写吃的食物类型和量,这可能不准确,因为人的记忆偏差、可能高估或者低估食物的量,不清楚食物中的营养成分等等。

要有足够的说服力,必须是由实验方提供场所、食物,全程监督。

《美国临床营养学杂志》有一项这种研究,发现在不运动的状态下,如果热量吃超了,超过的量一致,高脂肪饮食比高碳水长胖更多[101]

这个研究让35名正常和肥胖的受试者随机分配到持续15天【同等热量】的高碳水化合物(55%碳水)或高脂肪(50%脂肪)饮食中,在前14天,调整了饮食量,保持他们的体重不变。第15天受试者在代谢房中静坐呆23小时,并吃了【同等热量的】超量饮食,结果是高脂肪组长了更多体脂。

自媒体不会告诉你的事:高脂肪比高碳水更胖人

为什么会如此呢?

该研究发现,虽然吃超的量相同,但最后的代谢效果不同:高碳水组的的实际热量盈余约为1338千焦,高脂肪组的实际热量盈余约为1728千焦。换句话说,高碳水吃下去后有一些额外损失,而高脂肪饮食的损失非常少,几乎没有。

所以原文结论是,对于经常久坐的人来说,长期食用高碳水化合物饮食,对肥胖具有一定的保护作用。言下之意,吃高碳水也会长胖,但是比吃高脂肪稍微少长胖一些。

原文结论


九、中国人的体质:高脂肪比高碳水更令人发胖

2017年《E Bio Medicine》发表了一项中国的研究[102],在中国北方人民解放军总医院和浙江大学进行,招募了307名健康青年(18-35岁,BMI<28)。

实验持续6个月,期间实验方提供了所有的食物,实验参与者的每一餐都在监督下进行,且避免过度或不寻常的剧烈运动。

封面

参与者随机分为三种饮食组:低脂高碳组(脂20%/碳66%/蛋14%)、中脂中度组(脂30%/碳/56%/蛋14%)、高脂低碳组(脂40%,碳46%,蛋14%)。

结果低脂高碳水组的体重和腰围下降最多。

原文结论:

总的来说,在非肥胖的健康中国人中,低脂肪/相对高碳水化合物的传统饮食似乎不太可能促进体重过度增加,并且这种饮食与西方国家更典型的饮食相比,心脏代谢风险更低。

我们的研究结果和【所有其他现有证据】表明,中国人民不应该继续降低碳水化合物为代价,增加膳食脂肪摄入量。

原文截图

另一项大型研究也支持解放军总院和浙大的研究。Hoper等人2015年对33项随机对照试验和10项队列研究进行的系统审查和Meta分析[103]结果表明:与常规脂肪水平的饮食相比,高碳低脂饮食会导致体重发生适度但有意义的降低(1.54kg)。

注意,这是只吃高碳水低脂肪饮食不运动的结果。


十、历年官方调查都指出中国人摄入脂肪超标,碳水不足

知乎上有一种观点认为,脂肪不会吃很多,而碳水很容易吃多。

这种想法与官方数据明显是不符的,根据官方数据,中国人:脂肪吃的太多,碳水吃的不够。

中国疾病控制与预防中心2011年的数据表明[104],从1982年到2011年,中国人的脂肪摄入量几乎翻倍,从占总热量的18%增加到32%(中国特大城市为37%);同时碳水的总热量占比从72%下降到54%(中国特大城市为47%)[105]

不管是全国第四、第五次营养调查结果、还是2015[20]和2020年中国居民营养与慢性病状况报告[106],都是这样的结论,一遍又一遍的重复。

第五次全国营养调查报告

2015年的中国居民营养与慢性病状况报告

2020年中国居民营养与慢性病状况报告

也就是说,从改革开放至今一路走来,中国人吃的碳水越来越少,脂肪越来越多,同时伴随肥胖和各种疾病率的飙升,比如糖尿病。

根据2020年4月中华医学会发表的最新全国流行病学调查结果[107],中国成人总糖尿病、自报糖尿病和采用ADA标准的新诊断糖尿病的总标准化患病率分别为12.8%;糖尿病前期的估为35.2%。换言之,48%的中国人属于糖尿病确诊或前期,按照14亿人口计算,有6.72亿人是糖尿病/前期。

如果真的碳水和糖是长胖的元凶,而不是脂肪,那中国人碳水越吃越少,脂肪越吃越多,就应该越来越瘦才对——现实与此刚好相反。


十一、胰岛素低一样可以长胖

那些嚷嚷着没有胰岛素不能储存脂肪的,可以消停了。

膳食脂肪转变成人体脂肪,不需要胰岛素,因为人体有一种蛋白质,叫做酰化刺激蛋白[108],acylation stimulation protein,简称ASP。

ASP能激刺激脂肪合成 ,促使脂肪细胞捕获更多的脂肪酸[109],它的储存脂肪作用与胰岛素相当[110],还抑制脂肪分解[111]

吃脂肪,就会上调ASP

膳食脂肪在小肠吸收重新合成后,以乳糜微粒的形式入血,乳糜微粒能刺激细胞合成ASP[112];摄入膳食脂肪后,乳糜微粒可ASP合成增加7.5倍[113]

也就是说,即便不吃或者少吃碳水,当前胰岛素水平不高,但只要吃了较多脂肪,ASP就会被激活、升高,人照样可以长胖。


扩展阅读

肉崽:力训研究所课程介绍

肉崽:有哪些是你健身久了知道的事?

肉崽:不健身直接吃蛋白粉会怎么样?

肉崽:健身增肌的原理是什么?

肉崽:局部减脂是如何被证实的

肉崽:两种不同的局部减脂原理

肉崽:为什么没有碳水,脂肪和酮体都无法供能?

肉崽:低脂低碳水高蛋白——最差的减肥饮食方式

肉崽:碳水不足,高热量高蛋白饮食也很难增肌

参考

  1. ^Alan A Aragon 1 , Brad J Schoenfeld 2 , Robert Wildman 3 , Susan Kleiner 4 , Trisha VanDusseldorp 5 , Lem Taylor 6 , Conrad P Earnest 7 , Paul J Arciero 8 , Colin Wilborn 6 , Douglas S Kalman 9 , Jeffrey R Stout 10 , Darryn S Willoughby 11 , Bill Campbell 12 , Shawn M Arent 13 , Laurent Bannock 14 , Abbie E Smith-Ryan 15 , Jose Antonio16.International society of sports nutrition position stand: diets and body composition.J Int Soc Sports Nutr. 2017 Jun 14;14:16.
  2. ^Carol F Kirkpatrick 1 , Julie P Bolick 2 , Penny M Kris-Etherton 3 , Geeta Sikand 4 , Karen E Aspry 5 , Daniel E Soffer 6 , Kaye-Eileen Willard 7 , Kevin C Maki 8.Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force.J Clin Lipidol. Sep-Oct 2019;13(5):689-711.e1.
  3. ^H J van Wyk, R E Davis, J S Davies.A critical review of low-carbohydrate diets in people with Type 2 diabetes.Diabet Med. 2016 Feb;33(2):148-57.
  4. ^Celeste E. Naude, Anel Schoonees, Marjanne Senekal, Taryn Young, Paul Garner, 4and Jimmy Volmink.Low Carbohydrate versus Isoenergetic Balanced Diets for Reducing Weight and Cardiovascular Risk: A Systematic Review and Meta-Analysis.PLoS One. 2014; 9(7): e100652
  5. ^Dena M Bravata, Lisa Sanders, Jane Huang, Harlan M Krumholz, Ingram Olkin, Christopher D Gardner, Dawn M Bravata.Efficacy and safety of low-carbohydrate diets: a systematic review.JAMA. 2003 Apr 9;289(14):1837-50.
  6. ^Michael L Dansinger 1 , Joi Augustin Gleason, John L Griffith, Harry P Selker, Ernst J Schaefer.Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial.JAMA. 2005 Jan 5;293(1):43-53.
  7. ^Jeannie Tay, Campbell H Thompson, Natalie D Luscombe-Marsh, Thomas P Wycherley, Manny Noakes, Jonathan D Buckley, Gary A Wittert, William S Yancy Jr, Grant D Brinkworth.Effects of an energy-restricted low-carbohydrate, high-unsaturatedfat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial.Diabetes Obes Metab. 2018 Apr;20(4):858-871.
  8. ^Grant D Brinkworth 1 , Manny Noakes, Jonathan D Buckley, Jennifer B Keogh, Peter M Clifton.Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 mo.Am J Clin Nutr. 2009 Jul;90(1):23-32.
  9. ^Alain J Nordmann 1 , Abigail Nordmann, Matthias Briel, Ulrich Keller, William S Yancy Jr, Bonnie J Brehm, Heiner C Bucher.Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials.Arch Intern Med. 2006 Feb 13;166(3):285-93.
  10. ^Carolyn D Summerbell 1 , Cate Cameron, Paul P Glasziou.WITHDRAWN: Advice on low-fat diets for obesity.Cochrane Database Syst Rev. 2008 Jul 16;(3):CD003640.
  11. ^Jeannie Tay 1 , Natalie D Luscombe-Marsh 2 , Campbell H Thompson 3 , Manny Noakes 4 , Jonathan D Buckley 5 , Gary A Wittert 3 , William S Yancy Jr 6 , Grant D Brinkworth 7.Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial.Am J Clin Nutr. 2015 Oct;102(4):780-90.
  12. ^Vivian L Veum, Johnny Laupsa-Borge, ?yvin Eng, Espen Rostrup, Terje H Larsen, Jan Erik Nordrehaug, Ottar K Nyg?rd , J?rn V Sagen, Oddrun A Gudbrandsen, Simon N Dankel, Gunnar Mellgren.Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial.Am J Clin Nutr. 2017 Jan;105(1):85-99."
  13. ^Carol S Johnston 1 , Sherrie L Tjonn, Pamela D Swan, Andrea White, Heather Hutchins, Barry Sears.Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.Am J Clin Nutr. 2006 May;83(5):1055-61.
  14. ^H J van Wyk, R E Davis, J S Davies.A critical review of low-carbohydrate diets in people with Type 2 diabetes.Diabet Med. 2016 Feb;33(2):148-57.
  15. ^Long Ge et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials.BMJ. 01 April,2020.
  16. ^Christopher D. Gardner et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA, 2018; 319 (7): 667-679.
  17. ^Alain J Nordmann 1 , Abigail Nordmann, Matthias Briel, Ulrich Keller, William S Yancy Jr, Bonnie J Brehm, Heiner C Bucher.Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials.Arch Intern Med. 2006 Feb 13;166(3):285-93.
  18. ^Marc-Andre Cornier 1 , W Troy Donahoo, Rocio Pereira, Inga Gurevich, Rickard Westergren, Sven Enerback, Peter J Eckel, Marc L Goalstone, James O Hill, Robert H Eckel, Boris Draznin.Insulin sensitivity determines the effectiveness of dietary macronutrient composition on weight loss in obese women.Obes Res. 2005 Apr;13(4):703-9.
  19. ^Lisa J Moran, Henry Ko, Marie Misso, Kate Marsh, Manny Noakes, Mac Talbot, Meredith Frearson, Mala Thondan, Nigel Stepto, Helena J Teede.Dietary composition in the treatment of polycystic ovary syndrome: a systematic review to inform evidence-based guidelines.J Acad Nutr Diet. 2013 Apr;113(4):520-45.
  20. ^D Papamichou, D B Panagiotakos, C Itsiopoulos.Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials.Nutr Metab Cardiovasc Dis. 2019 Jun;29(6):531-543.
  21. ^Anette Due 1 , Thomas M Larsen, Huiling Mu, Kjeld Hermansen, Steen Stender, Arne Astrup.Comparison of 3 ad libitum diets for weight-loss maintenance, risk of cardiovascular disease, and diabetes: a 6-mo randomized, controlled trial.Am J Clin Nutr. 2008 Nov;88(5):1232-41.
  22. ^Alan A Aragon 1 , Brad J Schoenfeld 2 , Robert Wildman 3 , Susan Kleiner 4 , Trisha VanDusseldorp 5 , Lem Taylor 6 , Conrad P Earnest 7 , Paul J Arciero 8 , Colin Wilborn 6 , Douglas S Kalman 9 , Jeffrey R Stout 10 , Darryn S Willoughby 11 , Bill Campbell 12 , Shawn M Arent 13 , Laurent Bannock 14 , Abbie E Smith-Ryan 15 , Jose Antonio16.International society of sports nutrition position stand: diets and body composition.J Int Soc Sports Nutr. 2017 Jun 14;14:16.
  23. ^Lee Hooper, senior lecturer in research synthesis and nutrition,1 Asmaa Abdelhamid, research associate,1 Helen J Moore, research associate,2 Wayne Douthwaite, research associate,2 C Murray Skeaff, professor,3 and Carolyn D Summerbell, professor of human nutrition2.Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies.BMJ. 2012; 345: e7666.
  24. ^Kevin D. Hall and Juen Guo.Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition.Gastroenterology. 2017 May; 152(7): 1718–1727.e3.
  25. ^Celeste E. Naude, Anel Schoonees, Marjanne Senekal, Taryn Young, Paul Garner, 4and Jimmy Volmink.Low Carbohydrate versus Isoenergetic Balanced Diets for Reducing Weight and Cardiovascular Risk: A Systematic Review and Meta-Analysis.PLoS One. 2014; 9(7): e100652
  26. ^Christophe Kosinski1 and Fran?ois R. Jornayvaz2.Effects of Ketogenic Diets on Cardiovascular Risk Factors: Evidence from Animal and Human Studies.Nutrients. 2017 May; 9(5): 517.
  27. ^Una Bradley,1 Michelle Spence,2 C. Hamish Courtney,1 Michelle C. McKinley,2 Cieran N. Ennis,1 David R. McCance,1 Jane McEneny,2 Patrick M. Bell,1 Ian S. Young,2 and Steven J. Hunter1.Low-Fat Versus Low-Carbohydrate Weight Reduction Diets Effects on Weight Loss, Insulin Resistance, and Cardiovascular Risk: A Randomized Control Trial.Diabetes. 2009 Dec; 58(12): 2741–2748.
  28. ^Kevin D Hall,3,* Kong Y Chen,3 Juen Guo,3 Yan Y Lam,4 Rudolph L Leibel,5 Laurel ES Mayer,5 Marc L Reitman,3 Michael Rosenbaum,5 Steven R Smith,6 B Timothy Walsh,5 and Eric Ravussin4.Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men1,2.Am J Clin Nutr. 2016 Aug; 104(2): 324–333.
  29. ^Tian Hu 1 , Katherine T Mills, Lu Yao, Kathryn Demanelis, Mohamed Eloustaz, William S Yancy Jr, Tanika N Kelly, Jiang He, Lydia A Bazzano.Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials.Am J Epidemiol. 2012 Oct 1;176 Suppl 7(Suppl 7):S44-54.
  30. ^E T Kennedy 1 , S A Bowman, J T Spence, M Freedman, J King.Popular diets: correlation to health, nutrition, and obesity.J Am Diet Assoc. 2001 Apr;101(4):411-20.
  31. ^Gary D Foster 1 , Holly R Wyatt, James O Hill, Brian G McGuckin, Carrie Brill, B Selma Mohammed, Philippe O Szapary, Daniel J Rader, Joel S Edman, Samuel Klein.A randomized trial of a low-carbohydrate diet for obesity.N Engl J Med. 2003 May 22;348(21):2082-90."
  32. ^Tingting Dong, Conceptualization, Data curation, Formal analysis, Software, Writing – original draft, Writing – review & editing,1 Man Guo, Data curation, Formal analysis,2 Peiyue Zhang, Data curation,1 Guogang Sun,Conceptualization,1 and Bo Chen, Writing – review & editing1.The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis.PLoS One. 2020; 15(1): e0225348."
  33. ^Lukas Schwingshackl,corresponding author1 Anna Chaimani,2,3,4 Georg Hoffmann,5 Carolina Schwedhelm,1 and Heiner Boeing1.A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus.Eur J Epidemiol. 2018; 33(2): 157–170.
  34. ^Ole Snorgaard,1 Grith M Poulsen,2 Henning K Andersen,3 and Arne Astrup2.Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes.BMJ Open Diabetes Res Care. 2017; 5(1): e000354.
  35. ^Hillard Kaplan, PhD, Prof., Prof Randall C Thompson, MD, Benjamin C Trumble, PhD, L Samuel Wann, MD, Adel H Allam, MD, Prof., Bret Beheim, PhD, Prof Bruno Frohlich, PhD, M Linda Sutherland, MD, James D Sutherland, MD, Jonathan Stieglitz, PhD, Daniel Eid Rodriguez, MD, David E Michalik, DO, Chris J Rowan, MD, Guido P Lombardi, Ram Bedi, PhD, Angela R Garcia, MA, Prof James K Min, MD, Jagat Narula, MD, Prof Caleb E Finch, PhD, Prof Michael Gurven, PhD, and Prof Gregory S Thomas, MD.Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study.Lancet. Author manuscript; available in PMC 2018 Jul 3.
  36. ^https://pubmed.ncbi.nlm.nih.gov/2045466/
  37. ^Willcox B, Willcox DC, Suzuki M. The Okinawa Diet Plan. New York, NY: Three Rivers Press, A Division of Random House; 2004.
  38. ^Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann. N.Y. Acad. Sci. 2007;1114:454–455.
  39. ^Donald Craig Willcox,a,b,c Giovanni Scapagnini,d and Bradley J. Willcoxb,c.Healthy aging diets other than the Mediterranean: A Focus on the Okinawan Diet.Mech Ageing Dev. Author manuscript; available in PMC 2017 Apr 24.
  40. ^Van Itallie TB, Tang M, Hashim SA. Recent advances in obesity research. London: Newman Publishing; 1975. Dietary approaches to obesity: Metabolic and appetitive considerations; pp. 256–69.
  41. ^Golay A, Allaz AF, Morel Y, de Tonnac N, Tankova S, Reaven G, et al. Similar weight loss with low- or high-carbohydrate diets. Am J Clin Nutr. 1996;63:174–8.
  42. ^Golay A, Eigenheer C, Morel Y, Kujawski P, Lehmann T, de Tonnac N, et al. Weight-loss with low or high carbohydrate diet? Int J Obes Relat Metab Disord. 1996;20:1067–72.
  43. ^Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet. 2017;390:2050–62.
  44. ^Fenn W. The deposition of potassium and phosphate with glycogen in rat livers. J Biol Chem 128: 297–308, 1939.
  45. ^ Fenn W, Haege LF. The deposition of glycogen with water in the livers of cats. J Biol Chem 136: 87–101, 1940.
  46. ^Olsson KE, Saltin B. Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand 80: 11–18, 1970. doi:10.1111/j.1748-1716.1970.tb04764.x.
  47. ^ Puckett HL, Wiley FH. The relation of glycogen to water storage in the liver. J Biol Chem 96: 367–371, 1932.
  48. [1](https://www.zhihu.com/question/406770433/answer/2210382239#ref_48_0)bKaori Minehira, Vincent Bettschart, Hubert Vidal, Nathalie Vega, Véronique Di Vetta, Valentine Rey, Philippe Schneiter, Luc Tappy.Effect of Carbohydrate Overfeeding on Whole Body and Adipose Tissue Metabolism in Humans.Obes Res. 2003 Sep;11(9):1096-103.
  49. ^K Minehira 1 , N Vega, H Vidal, K Acheson, L Tappy.Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans.Int J Obes Relat Metab Disord. 2004 Oct;28(10):1291-8.
  50. ^K J Acheson, J P Flatt, E Jéquier.Glycogen synthesis versus lipogenesis after a 500 gram carbohydrate meal in man.Metabolism. 1982 Dec;31(12):1234-40.
  51. ^R M McDevitt 1 , S J Bott, M Harding, W A Coward, L J Bluck, A M prentice.de novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese women.Am J Clin Nutr. 2001 Dec;74(6):737-46.
  52. ^A Strawford 1 , F Antelo, M Christiansen, M K Hellerstein.Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O.Am J Physiol Endocrinol Metab. 2004 Apr;286(4):E577-88.
  53. ^Evan D. Rosen1,2,3 and Bruce M. Spiegelman2,4.What We Talk About When We Talk About Fat*.Cell. Author manuscript; available in PMC 2015 Jan 16.
  54. ^Michele Alves-Bezerra and David E. Cohen.Triglyceride metabolism in the liver.Compr Physiol. Author manuscript; available in PMC 2019 Feb 15.
  55. [2](https://www.zhihu.com/question/406770433/answer/2210382239#ref_55_0)bHirsch J, Farquhar JW, Ahrens EH, Jr, et al: Studies of adipose tissue in man–a microtechnique for sampling and analysis. Am J Clin Nutr 8:499, 1960
  56. ^j6rntorp P: Polyunsatuated fatty acids in man. Thesis. Scand J Clin Lab Invest 12:52, 1960 (suppl)
  57. ^Hahn P., Novak M. 1975. Development of brown and white adipose tissue. J. Lipid Res. 16: 79–91.
  58. ^不同膳食脂肪酸对大鼠乳腺癌组织脂肪酸组成和脂代谢基因表达的影响-期刊-钛学术文献服务平台
  59. ^C A Mattacks 1 , C M Pond.The effects of feeding suet-enriched chow on site-specific differences in the composition of triacylglycerol fatty acids in adipose tissue and its interactions in vitro with lymphoid cells.Br J Nutr. 1997 Apr;77(4):621-43.
  60. ^Bey nen AC, Hermus RJJ, Hautvast JGAJ. A mathema ticalrelationship between the fatty acid and composition of the diet and that of the adipose tissue in man〔J〕. Am J Clin Nutr, 1980, 33: 81.
  61. ^Hunter DJ, Rimm EB, Sa cks FM, et al. Compa riso n of measures of fatty acid intake by subcutaneous fat aspirate , food frequency questionnaire, and diet records in a free-liv ing popula tio n of USmen〔 J〕. Am J Epidemi -ol , 1992, 135: 418.
  62. ^Garland M, Sacks FM , Colditz GA,et al. The relation between dietary intake and adipose tissue composition of selected fatty acids in US women〔J〕. Am J Clin Nutr, 1998, 67: 25.
  63. ^Zhu J, Lee B, Buhman KK, Cheng JX. A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. J Lipid Res. 2009;50:1080–1089.
  64. ^de Wit N, Derrien M, Bosch-Vermeulen H, Oosterink E, Keshtkar S, Duval C, de Vogel-van den Bosch J, Kleerebezem M, Muller M, van der Meer R. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303:G589–599.
  65. ^Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res 43: 2007–2016, 2002.
  66. ^Mattson FH, Volpenhein RA. THE DIGESTION AND ABSORPTION OF TRIGLYCERIDES. J Biol Chem. 1964;239:2772–2777.
  67. ^Kern F, Jr, Borgstrom B. Quantitative study of the pathways of triglyceride synthesis by hamster intestinal mucosa. Biochim Biophys Acta. 1965;98:520–531.
  68. ^Xia T, Mostafa N, Bhat BG, Florant GL, Coleman RA. Selective retention of essential fatty acids: The role of hepatic monoacylglycerol acyltransferase. Am. J. Physiol. 1993;265:R414–R419.
  69. ^Kayden HJ, Senior JR, Mattson FH. The monoglyceride pathway of fat absorption in man. J. Clin. Invest. 1967;46:1695–1703.
  70. ^Gajda AM, Storch J. Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot Essent Fatty Acids. 2015;93:9–16.
  71. ^Coleman RA, Haynes EB. Monoacylglycerol acyltransferase. Evidence that the activities from rat intestine and suckling liver are tissue-specific isoenzymes. J Biol Chem 261: 224–228, 1986.
  72. ^Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49: 2283–2301, 2008.
  73. ^Yen CL, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res. 2015;56:489–501.
  74. ^Anderson LJ, Boyles JK, Hussain MM. A rapid method for staining large chylomicrons. J Lipid Res 30: 1819–1824, 1989.
  75. ^Gantz D, Bennett CS, Derksen A, Small DM. Size and shape determination of fixed chylomicrons and emulsions with fluid or solid surfaces by three-dimensional analysis of shadows. J Lipid Res 31: 163–171, 1990.
  76. ^Cartwright IJ, Higgins JA. Direct evidence for a two-step assembly of ApoB48-containing lipoproteins in the lumen of the smooth endoplasmic reticulum of rabbit enterocytes. J Biol Chem. 2001;276:48048–48057.
  77. ^Havel RJ. Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol 5: 102–109, 1994.
  78. ^Iqbal J, and Hussain MM. Intestinal lipid absorption. American Journal of Physiology Endocrinology and Metabolism 296: E1183–1194, 2009.
  79. ^Biolo G, Tipton KD, Klein S, and Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol Endocrinol Metab 273: E122– E129, 1997.
  80. ^Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 2003;1609:127–43.
  81. ^Van Schaftingen E., Vandercammen A., Detheux M., Davies D. R. (1992) The regulatory protein of liver glucokinase. Adv. Enzyme Regul. 32, 133–148
  82. ^Baltrusch S., Francini F., Lenzen S., Tiedge M. (2005) Interaction of glucokinase with the liver regulatory protein is conferred by leucine-asparagine motifs of the enzyme. Diabetes 54, 2829–2837
  83. ^J N Nielsen 1 , E A Richter.Regulation of glycogen synthase in skeletal muscle during exercise.Acta Physiol Scand. 2003 Aug;178(4):309-19.
  84. ^DeFronzo R.A., Jacot E., Jequier E., Maeder E., Wahren J., Felber J.P. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.Diabetes.1981;30:1000–1007.
  85. ^Ferrannini E, Simonson DC, Katz LD, Reichard G, Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes.Metabolism.1988;37:79–85.
  86. ^Biolo G, Declan R, and Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 95: 811–819, 1995.
  87. ^D E Larson 1 , R Rising, R T Ferraro, E Ravussin.Spontaneous overfeeding with a ‘cafeteria diet’ in men: effects on 24-hour energy expenditure and substrate oxidation.Int J Obes Relat Metab Disord. 1995 May;19(5):331-7.
  88. ^D E Larson 1 , P A Tataranni, R T Ferraro, E Ravussin.Ad libitum food intake on a “cafeteria diet” in Native American women: relations with body composition and 24-h energy expenditure.Am J Clin Nutr. 1995 Nov;62(5):911-7.
  89. ^Kevin JAcheson, PhD; Yves Schutz, PhD; Thierry Bessard, MD; Krishna Anantharaman, PhD; Jean-Pierre Flail, PhD; and Eric J#{233}quier,MD.Glycogen storage capacity and de novo Iipogenesis during massive carbohydrate overfeeding in man.September 1988American Journal of Clinical Nutrition 48(2):240-7
  90. ^Modak J., Deckwer W.D., Zeng A.P. Metabolic control analysis of eucaryotic pyruvate dehydrogenase multienzyme complex. Biotechnol. Prog. 2002;18:1157–1169.
  91. ^Moxley M.A., Vinnakota K.C., Beard D.A. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats. PLoS Comput. Biol. 2018;14:e1005982.
  92. ^Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289: 16615–16623, 2014.
  93. ^Svensson K., Dent J.R., Schenk S. Defining the contribution of skeletal muscle pyruvate dehydrogenase α1 to exercise performance and insulin action. Am J Physiol Endocrinol Metab. 2018;315:E1034–E1045.
  94. ^Morales-Alamo D., Guerra B., Calbet J.A.L. Skeletal muscle pyruvate dehydrogenase phosphorylation and lactate accumulation during sprint exercise in normoxia and severe acute hypoxia: effects of antioxidants. Front. Physiol. 2018;9:188.
  95. ^Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, Formisano P, Beguinot F. Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. J Biol Chem. 2001;276:45088–45097.
  96. ^M Cardell 1 , B K Siesj?, T Wieloch.Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia.J Cereb Blood Flow Metab. 1991 Jan;11(1):122-8.
  97. ^M Cardell 1 , B K Siesj?, T Wieloch.Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia.J Cereb Blood Flow Metab. 1991 Jan;11(1):122-8.
  98. ^ D E Larson 1 , R Rising, R T Ferraro, E Ravussin.Spontaneous overfeeding with a ‘cafeteria diet’ in men: effects on 24-hour energy expenditure and substrate oxidation.Int J Obes Relat Metab Disord. 1995 May;19(5):331-7.
  99. ^ D E Larson 1 , P A Tataranni, R T Ferraro, E Ravussin.Ad libitum food intake on a “cafeteria diet” in Native American women: relations with body composition and 24-h energy expenditure.Am J Clin Nutr. 1995 Nov;62(5):911-7.
  100. ^Kevin JAcheson, PhD; Yves Schutz, PhD; Thierry Bessard, MD; Krishna Anantharaman, PhD; Jean-Pierre Flail, PhD; and Eric J#{233}quier,MD.Glycogen storage capacity and de novo Iipogenesis during massive carbohydrate overfeeding in man.September 1988American Journal of Clinical Nutrition 48(2):240-7
  101. ^ Trudy Y Shepard, Kathleen M Weil, Teresa A Sharp, Gary K Grunwald, Melanie L Bell, James O Hill, and Robert H Eckel.Occasional physical inactivity combined with a high-fat diet may be important in the development and maintenance of obesity in human http://subjects.Am J Clin Nutr 2001;73:703–8.
  102. ^Yi Wan,a,1 Fenglei Wang,a,1 Jihong Yuan,b Jie Li,b Dandan Jiang,b Jingjing Zhang,a Tao Huang,c Jusheng Zheng,a Jim Mann,d and Duo Lia,e.Effects of Macronutrient Distribution on Weight and Related Cardiometabolic Profile in Healthy Non-Obese Chinese: A 6-month, Randomized Controlled-Feeding Trial.EBioMedicine. 2017 Aug; 22: 200–207.
  103. ^Hooper L., Abdelhamid A., Bunn D., Brown T., Summerbell C.D., Skeaff C.M. Effects of total fat intake on body weight. Cochrane Database Syst. Rev. 2015;8:CD011834.
  104. ^Ministry of Health: Bureau of Disease Control and Prevention . China Center for Disease Control and Prevention (China CDC); 2011. China NCD Report 2011 Beijing, China.
  105. ^Jenkins D.J., Wong J.M., Kendall C.W., Esfahani A., Ng V.W., Leong T.C., Faulkner D.A., Vidgen E., Greaves K.A., Paul G., Singer W. The effect of a plant-based low-carbohydrate (“Eco-Atkins”) diet on body weight and blood lipid concentrations in hyperlipidemic subjects. Arch. Intern. Med. 2009;169:1046–1054.
  106. ^http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/42311/44583/wz44585/Document/1695276/1695276.htm
  107. ^Li Yongze, et al., . Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross pal study. BMJ 2020;369:m997
  108. ^Rezvani R, Gupta A, Smith J, Poursharifi P, Marceau P, Pérusse L, et al. Cross-sectional associations of acylation stimulating protein (ASP) and adipose tissue gene expression with estradiol and progesterone in pre- and postmenopausal women. Clin Endocrinol (Oxf) 2014;81:736–45.
  109. ^Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 2003;1609:127–43.
  110. ^Cianflone K, Roncari DAK, Maslowska M, Baldo A, Forden J, Sniderman AD. Adipsin/acylation stimulating protein system in human adipocytes: regulation of triacylglycerol synthesis. Biochemistry. 1994;33(32):9489–9495.
  111. ^Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochimica et Biophysica Acta. 2003;1609(2):127–143.
  112. ^A D Sniderman 1 , K Cianflone, L Summers, B Fielding, K Frayn.The acylation-stimulating protein pathway and regulation of postprandial metabolism.Proc Nutr Soc. 1997 Jul;56(2):703-12.
  113. ^T Scantlebury 1 , M Maslowska, K Cianflone.Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes.J Biol Chem. 1998 Aug 14;273(33):20903-9.

  1. a ↩︎

  2. a ↩︎